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pyCPA is a pragmatic Python implementation
of Compositional Performance Analysis (aka the
SymTA/S approach provided by Symtavision (now:
Luxoft)) used for research in worst-case timing anal-
ysis. Unlike the commercial SymTA/S tool, pyCPA
is not intended for commercial-grade use and does
not guarantee correctness of the implementation.
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CHAPTER 1

Installation

Before you can install pyCPA, you must set up Python (Prerequisites). If you already have a Python installation,
you may directly proceed with Quickstart. Alternatively, if you want to modify the pyCPA code, please consult For
Developers.

A brief introduction in how to test your installation is provided in Using pyCPA.

1.1 Prerequisites

First of all, you need a basic Python (2.7 or 3.x) environment. As a Linux user, you most probably have Python already
installed. On Windows, we recommend to use Python(x,y), which includes a comprehensive set of scientific Python
libraries and tools as well as related documentation. Python(x,y) comes with several interactive consoles (based on
IPython), editors and applications. For your first hands-on experience, we recommend using Spyder as an IDE.
You can also run a command prompt via the Python(x,y) icon on the Desktop and choosing IPython (sh) as an
interactive console.

1.2 Quickstart

The easiest way to install pyCPA is by using pip. For a system-wide installation of the current pyCPA version, you
simply run the following command:

$ pip install https://github.com/IDA-TUBS/pycpa/archive/master.zip

Alternatively, e.g. if you do not have admin privileges, you can install pyCPA for the current user:

$ pip install --user https://github.com/IDA-TUBS/pycpa/archive/master.zip

3
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1.3 For Developers

pyCPA has the following dependencies:

• Required Python packages: setuptools, argparse, pygraphviz, matplotlib

• Optional Python packages: numpy, simpy, xlrd

Before proceeding, you might want to check the status of your Python installation, i.e. what version is installed (if at
all) and what Python packages are already available, using the following commands:

$ python --version
$ pydoc modules

For downloading the pyCPA source code, you simply create a clone from the git git repository, e.g. by running the
following command:

$ git clone https://github.com/IDA-TUBS/pycpa/

From within the pyCPA repository, execute the following command to install pyCPA in editable mode (i.e. changes to
the source code do not require re-installation to be effective):

$ pip install --user -e .

1.4 Testing and using pyCPA

Congratulations, you have installed pyCPA!

In order to test pyCPA, you may want to run the examples which are provided with the distribution. The quickest way
to do this is to run the following on the command prompt (e.g. IPython (sh) on Windows):

$ python /path/to/pycpa/examples/spp_test.py

If you want to know what this examples does and how it works checkout the Static Priority Preemtive Example.

Depending on your personal preferences, you may also use an IDE of which we give a more detailed account in the
following sections.

1.4.1 Using an IDE: Spyder (Windows)

Spyder is installed with Python(x,y). Simply open one of the example files (e.g. spp_test.py) and click the Run button.

1.4.2 Using an IDE: PyDev

You may also use Eclipse with PyDev as IDE, which can be installed by the following steps:

1. Make sure that you have installed Python BEFORE you install Eclipse.

2. Download from http://www.eclipse.org/downloads/eclipse-packages/ the current Eclipse release for Windows
32 bit (!). Extract the zip-file, execute eclipse.exe and follow the installation instructions.

3. Open Eclipse and specify a workspace. If you open a workspace for the first time, you will have to close the
Welcome tab, before proceeding to your workspace.

4 Chapter 1. Installation
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4. Select the menu item Help -> Install New Software, search for the site http://pydev.org/updates.
Select and install the item “PyDev” which will be displayed in the list of available software.

Now, you can set up a pyCPA project as follows:

1. Open the PyDev-Perspective by selecting in the main menu Window -> Open Perspective -> Other
-> PyDev

2. Select in the main menu File -> New -> PyDev Project.

3. In the PyDev-Project Window specify a project name; the project will be saved to your workspace unless speci-
fied otherwise.

4. Choose the project type “Python” and select the 2.7 interpreter version.

5. Click on “Please configure an interpreter before proceeding”.

i. Select Manual Config in the pop-up window.

ii. In the settings for the Python interpreter click New... and specify an interpreter name, e.g. Python27,
and the path to the interpreter executable (e.g. C:\myPathToPython\python.exe). In the appearing
pop-up window select all options.

iii. In the tab Libraries, select New Folder and specify the path to the pyCPA-folder (e.g.
C:\MyPathTo\pycpa).

iv. Close the preferences window by clicking ok.

6. Back in the PyDev-Project Window, click add project directory to PYTHONPATH and then the but-
ton Finish.

7. You may now add a Python file to your project (right-click on your project in the PyDev Package Explorer ->
New. . . -> File) and write a Python program (e.g. test.py) which uses pyCPA.

8. To run test.py, right-click on test.py and select Run as -> Python Run. If you want to modify your
run settings in order to e.g. specify arguments, select Run as -> Run Configurations and adapt the
settings as needed before clicking Run in the Run Configurations Window.

9. You may also try out the examples which are provided with pyCPA such as the Static Priority Preemtive Exam-
ple.

1.4. Testing and using pyCPA 5
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CHAPTER 2

Examples

Contents:

2.1 Static Priority Preemtive Example

2.1.1 Introduction

In this
section, we
will dissect
the SPP
example
which is
represen-
tative for
the ideas
behind py-
CPA. The
full source
code of the
example
is shown
at the end
of this
section.

Before we
begin some
general re-
minder:

7
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pyCPA
is NOT a
tool! It rather is a package of methods and classes which can be embedded into your pyhon application - the spp
example is such an example application.

Each pyCPA program consists of three steps:

• initialization

• setting up the architecture

• one or multiple scheduling analyses

The architecture can be entered in two ways, either you provide it with the source code or you can use an XML loader
such as the Symta or the SMFF loader. However, in most cases it is sufficient to code your architecture directly in
a python file. For this example we assume that our architecture consists of two resources (e.g. CPUs) scheduled
by an static-priority-preemptive (SPP) scheduler and four tasks of which some communicate by event-triggering.
The environment stimulus (e.g. an sensor or input from another system) is assumed to be periodic with jitter. The
application graph is shown on on the right.

2.1.2 Initialization

Now, let’s look at the example. Before we actually start with the program, we import all pycpa modules which are
needed for this example

from pycpa import model
from pycpa import analysis
from pycpa import schedulers
from pycpa import graph
from pycpa import options

The interesting module are pycpa.spp which contains scheduler specific algorithms, pycpa.graph which is used
to plot a task graph of this example and pycpa.options which controls various modes in which pyCPA can be
executed.

pyCPA can be initialized by pycpa.options.init_pycpa(). This will parse the pyCPA related options such
as the propagation method, verbosity, maximum-busy window, etc. Conveniently, this also prints the options which
will be used for your pyCPA session. This is handy, when you run some analyses in batch jobs and want are uncertain
about the exact settings after a few weeks. However, the explicit call of this function is not necessary most of the time,
as it is being implicitly called at the beginning of the analysis. It can be useful to control the exact time where the
initialization happens in case you want to manually override some options from your code.

2.1.3 System Model

Now, we create an empty system, which is just a container for all other objects:

# generate an new system
s = model.System()

The next step is to create two resources R1 and R2 and bind them to the system via pycpa.model.System.
bind_resource(). When creating a resource via pycpa.model.Resource(), the first argument of the con-
structor sets the resource id (a string) and the second defines the scheduling policy. The scheduling policy is defined
by a reference to an instance of a scheduler class derived from pycpa.analysis.Scheduler. For SPP, this
is pycpa.spp.SPPScheduler. In this class, different functions are defined which for instance compute the
multiple-event busy window on that resource or the stopping condition for that particular scheduling policy. The

8 Chapter 2. Examples



pycpa Documentation, Release current

stopping condition specifies how many activations of a task have to be considered for the analysis. The default im-
plementations of these functions from pycpa.analysis.Scheduler can be used for certain schedulers, but
generally should be overridden by scheduler-specific versions. For SPP we have to look at all activations which fall in
the level-i busy window, thus we choose the spp stopping condition.

r1 = s.bind_resource(model.Resource("R1", schedulers.SPPScheduler()))
r2 = s.bind_resource(model.Resource("R2", schedulers.SPPScheduler()))

The next part is to create tasks via pycpa.model.Resource() and bind them to a resource via pycpa.model.
Resource.bind_task(). For tasks, we pass some parameters to the constructor, namely the identifier (string),
the scheduling_paramter denoting the priority, and the worst- and best-case execution times (wcet and bcet).

# create and bind tasks to r1
t11 = r1.bind_task(model.Task("T11", wcet=10, bcet=5, scheduling_parameter=1))
t12 = r1.bind_task(model.Task("T12", wcet=3, bcet=1, scheduling_parameter=2))

# create and bind tasks to r2
t21 = r2.bind_task(model.Task("T21", wcet=2, bcet=2, scheduling_parameter=1))
t22 = r2.bind_task(model.Task("T22", wcet=9, bcet=4, scheduling_parameter=2))

In case tasks communicate with each other through event propagation (e.g. one task fills the queue of another task), we
model this through task links, which are created by pycpa.model.Task.link_dependent_task() A task
link is abstract and does not consume any additional time. In case of communication-overhead it must be modeled by
using other resources/tasks.

# specify precedence constraints: T11 -> T21; T12-> T22
t11.link_dependent_task(t21)
t12.link_dependent_task(t22)

Lastly we must set the input event models for all tasks that are not activated by another task. An event model is an
abstraction of possible activation patterns and are commonly parametrized by an activation period P, a jitter J (optional)
and an minimum distance d (optional). Such an event model is created by pycpa.model.PJdEventModel.

# register a periodic with jitter event model for T11 and T12
t11.in_event_model = model.PJdEventModel(P=30, J=5)
t12.in_event_model = model.PJdEventModel(P=15, J=6)

2.1.4 Plotting the Task-Graph

Then, we plot the taskgraph to a pdf file by using pycpa.graph.graph_system() from the graph module.

# plot the system graph to visualize the architecture
g = graph.graph_system(s, 'spp_graph.pdf', dotout='spp_graph.dot')

2.1.5 Analysis

The analysis is performed by calling pycpa.analysis.analyze_system(). This will will find the fixed-point
of the scheduling problem and terminate if a result was found or if the system is not feasible (e.g. one busy window or
the amount a propagations was larger than a limit or the load on a resource is larger one).

# perform the analysis
print("Performing analysis")
task_results = analysis.analyze_system(s)

2.1. Static Priority Preemtive Example 9
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pycpa.analysis.analyze_system() returns a dictionary with results for each task in the form of instances
to pycpa.analysis.TaskResult. Finally, we print out some of the results:

# print the worst case response times (WCRTs)
print("Result:")
for r in sorted(s.resources, key=str):

for t in sorted(r.tasks, key=str):
print("%s: wcrt=%d" % (t.name, task_results[t].wcrt))

The output of this example is:

pyCPA - Compositional Performance Analysis in Python.

Version 1.2
Copyright (C) 2010-2017, TU Braunschweig, Germany. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

invoked via: examples/spp_test.py

check_violations : False
debug : False
e2e_improved : False
max_iterations : 1000
max_wcrt : inf
nocaching : False
propagation : busy_window
show : False
verbose : False

Performing analysis
Result:
T11: wcrt=10

b_wcrt=q*WCET:1*10=10
T12: wcrt=13

b_wcrt=T11:eta*WCET:1*10=10, q*WCET:1*3=3
T21: wcrt=2

b_wcrt=q*WCET:1*2=2
T22: wcrt=19

b_wcrt=T21:eta*WCET:1*2=2, q*WCET:2*9=18

10 Chapter 2. Examples
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As you can see, the worst-case response times of the tasks are 10, 13, 2 and 19.

This is the full spp-test file.

"""
| Copyright (C) 2010 Philip Axer
| TU Braunschweig, Germany
| All rights reserved.
| See LICENSE file for copyright and license details.

:Authors:
- Philip Axer

Description
-----------

Simple SPP example
"""

from pycpa import model
from pycpa import analysis
from pycpa import schedulers
from pycpa import graph
from pycpa import options

def spp_test():
# init pycpa and trigger command line parsing
options.init_pycpa()

# generate an new system
s = model.System()

# add two resources (CPUs) to the system
# and register the static priority preemptive scheduler
r1 = s.bind_resource(model.Resource("R1", schedulers.SPPScheduler()))
r2 = s.bind_resource(model.Resource("R2", schedulers.SPPScheduler()))

# create and bind tasks to r1
t11 = r1.bind_task(model.Task("T11", wcet=10, bcet=5, scheduling_parameter=1))
t12 = r1.bind_task(model.Task("T12", wcet=3, bcet=1, scheduling_parameter=2))

# create and bind tasks to r2
t21 = r2.bind_task(model.Task("T21", wcet=2, bcet=2, scheduling_parameter=1))
t22 = r2.bind_task(model.Task("T22", wcet=9, bcet=4, scheduling_parameter=2))

# specify precedence constraints: T11 -> T21; T12-> T22
t11.link_dependent_task(t21)
t12.link_dependent_task(t22)

# register a periodic with jitter event model for T11 and T12
t11.in_event_model = model.PJdEventModel(P=30, J=5)
t12.in_event_model = model.PJdEventModel(P=15, J=6)

# plot the system graph to visualize the architecture
g = graph.graph_system(s, 'spp_graph.pdf', dotout='spp_graph.dot')

# perform the analysis
print("Performing analysis")

(continues on next page)

2.1. Static Priority Preemtive Example 11
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(continued from previous page)

task_results = analysis.analyze_system(s)

# print the worst case response times (WCRTs)
print("Result:")
for r in sorted(s.resources, key=str):

for t in sorted(r.tasks, key=str):
print("%s: wcrt=%d" % (t.name, task_results[t].wcrt))
print(" b_wcrt=%s" % (task_results[t].b_wcrt_str()))

expected_wcrt = dict()
expected_wcrt[t11] = 10
expected_wcrt[t12] = 13
expected_wcrt[t21] = 2
expected_wcrt[t22] = 19

for t in expected_wcrt.keys():
assert(expected_wcrt[t] == task_results[t].wcrt)

if __name__ == "__main__":
spp_test()

2.2 Tutorial

• Introduction

• Initialization

• Step 1: Base Scenario

• Step 2: Refining the Analysis

• Step 3: Junctions and Forks

• Step 4: Cause-Effect Chains

• Step 5: Complex Run-Time Environments

2.2.1 Introduction

In this section, we will assemble several pyCPA examples step-by-step.

Before we begin some general reminder:

pyCPA is NOT a tool! It rather is a package of methods and classes which can be embedded into your python
application.

Each pyCPA program consists of three steps:

• initialization

• setting up the architecture

• one or multiple scheduling analyses

12 Chapter 2. Examples
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The architecture can be entered in two ways, either you provide it with the source code or you can use an XML loader
such as the SMFF loader, the Almathea parser or the task chain parser. However, in most cases it is sufficient to code
your architecture directly in a python file on which we will focus in this tutorial.

2.2.2 Initialization

Now, let’s look at the example. Before we actually start with the program, we import the all pycpa modules

from pycpa import *

Note that a few modules - such as the pycpa.smff_loader, pycpa.cparpc and pycpa.simulation - must
be imported explicitly as they require additional third-party modules.

pyCPA can be initialized by pycpa.options.init_pycpa(). This will parse the pyCPA related options such
as the propagation method, verbosity, maximum-busy window, etc. Conveniently, this also prints the options which
will be used for your pyCPA session. This is handy, when you run some analyses in batch jobs and want are uncertain
about the exact settings after a few weeks. However, the explicit call of this function is not necessary most of the time,
as it is being implicitly called at the beginning of the analysis. It can be useful to control the exact time where the
initialization happens in case you want to manually override some options from your code.

2.2.3 Step 1: Base Scenario

In the first step, we want to model and analyse our base scenario as depicted in the figure. It comprises two CPUs, a
bus and two task chains. Task T11 and T12 execute on CPU1 and, once completed, activate the bus-communication
tasks T21 and T22 respectively. On CPU2, T31 and T32 are activated by their preceding communication tasks.

Fig. 1: Base scenario

System Model

First,
we
cre-
ate
an
empty
sys-
tem,
which
is
just
a
con-
tainer
for
all
other
ob-
jects:

# generate an new system
s = model.System('step1')

2.2. Tutorial 13
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The next step is to create the three resources and bind them to the system via pycpa.model.System.
bind_resource(). When creating a resource via pycpa.model.Resource(), the first argument of the
constructor sets the resource id (a string) and the second defines the scheduling policy. The scheduling policy is
defined by a reference to an instance of a scheduler class derived from pycpa.analysis.Scheduler. For SPP,
this is pycpa.schedulers.SPPScheduler which we use for both processing resources. For the bus, we use
pycpa.schedulers.SPNPScheduler.

# add three resources (2 CPUs, 1 Bus) to the system
# and register the SPP scheduler (and SPNP for the bus)
r1 = s.bind_resource(model.Resource("CPU1", schedulers.SPPScheduler()))
r2 = s.bind_resource(model.Resource("BUS", schedulers.SPNPScheduler()))
r3 = s.bind_resource(model.Resource("CPU2", schedulers.SPPScheduler()))

The next part is to create tasks and bind them to a resource via pycpa.model.Resource.bind_task(). For
tasks, we pass some parameters to the constructor, namely the identifier (string), the scheduling_parameter, and the
worst- and best-case execution times (wcet and bcet). The scheduling_parameter is evaluated by the scheduler which
was assigned to the resource. For SPP and SPNP, it specifies the priority. By default higher numbers denote lower
priorities.

# create and bind tasks to r1
t11 = r1.bind_task(model.Task("T11", wcet=10, bcet=5, scheduling_parameter=2))
t12 = r1.bind_task(model.Task("T12", wcet=3, bcet=1, scheduling_parameter=3))

# create and bind tasks to r2
t21 = r2.bind_task(model.Task("T21", wcet=2, bcet=2, scheduling_parameter=2))
t22 = r2.bind_task(model.Task("T22", wcet=9, bcet=5, scheduling_parameter=3))

# create and bind tasks to r3
t31 = r3.bind_task(model.Task("T31", wcet=5, bcet=3, scheduling_parameter=3))
t32 = r3.bind_task(model.Task("T32", wcet=3, bcet=2, scheduling_parameter=2))

In case tasks communicate with each other through event propagation (e.g. one task fills the queue of another task), we
model this through task links, which are created by pycpa.model.Task.link_dependent_task() A task
link is abstract and does not consume any additional time. In case of communication-overhead it must be modeled by
using other resources/tasks.

# specify precedence constraints: T11 -> T21 -> T31; T12-> T22 -> T32
t11.link_dependent_task(t21).link_dependent_task(t31)
t12.link_dependent_task(t22).link_dependent_task(t32)

Last, we need to assign activation patterns (aka input event models) to the first tasks in the task chains, i.e.
T11 and T12. We do this by assigning a periodic with jitter model, which is implemented by pycpa.model.
PJdEventModel().

# register a periodic with jitter event model for T11 and T12
t11.in_event_model = model.PJdEventModel(P=30, J=3)
t12.in_event_model = model.PJdEventModel(P=15, J=1)

Plotting the Task-Graph

After creating the system model, we can use pycpa.graph.graph_system() from the graph module in order
to visualize the task graph. Here, we create a DOT (graphviz) and PDF file.

# graph the system to visualize the architecture
g = graph.graph_system(s, filename='%s.pdf' % s.name, dotout='%s.dot' % s.name,

→˓show=False, chains=chains)

14 Chapter 2. Examples
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Analysis

The analysis is performed by calling pycpa.analysis.analyze_system(). This will will find the fixed-point
of the scheduling problem and terminate if a result was found or if the system is not feasible (e.g. one busy window or
the amount a propagations was larger than a limit or a resource is overloaded).

# perform the analysis
print("\nPerforming analysis of system '%s'" % s.name)
task_results = analysis.analyze_system(s)

pycpa.analysis.analyze_system() returns a dictionary with results for each task in the form of instances
to pycpa.analysis.TaskResult. Finally, we print out the resulting worst-case response times and the corre-
sponding details of the busy-window in which the worst-case response-time was found.

# print the worst case response times (WCRTs)
print("Result:")
for r in sorted(s.resources, key=str):

for t in sorted(r.tasks & set(task_results.keys()), key=str):
print("%s: wcrt=%d" % (t.name, task_results[t].wcrt))
print(" b_wcrt=%s" % (task_results[t].b_wcrt_str()))

The output of this example is:

pyCPA - Compositional Performance Analysis in Python.

Version 1.2
Copyright (C) 2010-2017, TU Braunschweig, Germany. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

invoked via: examples/tutorial.py

check_violations : False
debug : False
e2e_improved : False
max_iterations : 1000
max_wcrt : inf
nocaching : False
propagation : busy_window
show : False
verbose : False

(continues on next page)

2.2. Tutorial 15
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(continued from previous page)

Performing analysis of system 'step1'
Result:
T21: wcrt=11

b_wcrt=blocker:9, q*WCET:1*2=2
T22: wcrt=11

b_wcrt=T21:eta*WCET:1*2=2, blocker:0, q*WCET:1*9=9
T11: wcrt=10

b_wcrt=q*WCET:1*10=10
T12: wcrt=13

b_wcrt=T11:eta*WCET:1*10=10, q*WCET:1*3=3
T31: wcrt=11

b_wcrt=T32:eta*WCET:2*3=6, q*WCET:1*5=5
T32: wcrt=3

b_wcrt=q*WCET:1*3=3

As you can see, the worst-case response times of the tasks are 11, 11, 10, 13, 11 and 3. We can also see, that for T21,
a lower-priority blocker (T22) has been accounted as required for SPNP scheduling.

End-to-End Path Latency Analysis

After the WCRT analysis, we can additionally calculate end-to-end latencies of task chains. For this, we first need to
define pycpa.model.Path objects and bind them to the system via pycpa.model.System.bind_path().
A path is created from a name and a sequence of tasks. Note that, the tasks will be automatically linked according to
the given sequence if the corresponding task links are not already registered.

# specify paths
p1 = s.bind_path(model.Path("P1", [t11, t21, t31]))
p2 = s.bind_path(model.Path("P2", [t12, t22, t32]))

The path analysis is invoked by pycpa.path_analysis.end_to_end_latency() with the path to analysis,
the task_results dictionary and the number of events. It returns the minimum and maximum time that it may take on
the given path to process the given number of events.

# perform path analysis of selected paths
for p in paths:

best_case_latency, worst_case_latency = path_analysis.end_to_end_latency(p,
→˓task_results, n=1)

print("path %s e2e latency. best case: %d, worst case: %d" % (p.name, best_
→˓case_latency, worst_case_latency))

The corresponding output is:

path P1 e2e latency. best case: 10, worst case: 32
path P2 e2e latency. best case: 8, worst case: 27

2.2.4 Step 2: Refining the Analysis

In this step, we show how analysis and propagation methods can be replaced in order to
apply an improved analysis. More precisely, we want to exploit inter-event stream cor-
relations that result from the SPNP scheduling on the bus as published in [Rox2010].
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Fig. 2: Refining the Analysis

System Model

We
use
the
same
sys-
tem
model
as
be-
fore
but
re-
place
the
sched-
uler
on
CPU2 by pycpa.schedulers.SPPSchedulerCorrelatedRox.

r3.scheduler = schedulers.SPPSchedulerCorrelatedRox()

This scheduler exploits inter-event stream correlations that are accessed via the correlated_dmin() func-
tion of the input event models. It therefore requires this function to be present for all event models on
this resource (CPU2). We achieve this by replacing the propagation method by pycpa.propagation.
SPNPBusyWindowPropagationEventModel for alls tasks on the bus.

for t in r2.tasks:
t.OutEventModelClass = propagation.SPNPBusyWindowPropagationEventModel

This results in the following analysis output:

Performing analysis of system 'step2'
Result:
T21: wcrt=11

b_wcrt=blocker:9, q*WCET:1*2=2
T22: wcrt=11

b_wcrt=T21:eta*WCET:1*2=2, blocker:0, q*WCET:1*9=9
T11: wcrt=10

b_wcrt=q*WCET:1*10=10
T12: wcrt=13

b_wcrt=T11:eta*WCET:1*10=10, q*WCET:1*3=3
T31: wcrt=5

b_wcrt=q*WCET:1*5=5
T32: wcrt=3

b_wcrt=q*WCET:1*3=3
path P1 e2e latency. best case: 10, worst case: 26
path P2 e2e latency. best case: 8, worst case: 27

You can see that the WCRT of T31 improved from 11 to 5.
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2.2.5 Step 3: Junctions and Forks

In this step, we illustrate the use of junctions and forks. Junctions need to be inserted to allow combining multiple
input event streams according to a given strategy. Forks can be used if a task has multiple dependent tasks (suc-
cessors). A customized fork strategy can be used if different event models shall be propagated to these tasks (e.g.
in case of hierarchical event streams [Rox2008]). In this example (see figure), we model the scenario that T12 and
T13 produce data that is transmitted by the same bus message which is received by the RX task on CPU2. Depend-
ing on whether T12 or T13 issued the message, T32 or T33 will be activated respectively. Hence, junctions and
forks enable modelling complex scenarios such as multiplexing and demultiplexing of messages as in [Thiele2015].

Fig. 3: Junctions and forks

System Model

Again,
we
start
with
the
same
sys-
tem
model
as
pre-
sented
in
the
base
scenario but remove the dependencies between T12, T22 and T32 by resetting next_tasks attribute. Note that
modifying a system model in such a way is not recommended but used for the sake of brevity in this tutorial.

# remove links between t12, t22 and t32
t12.next_tasks = set()
t22.next_tasks = set()

Next, we add the additional tasks T31 and TX to CPU1 and specify an input event model for T31.

# add one more task to R1
t13 = r1.bind_task(model.Task("T13", wcet=5, bcet=2, scheduling_parameter=4))
t13.in_event_model = model.PJdEventModel(P=50, J=2)
# add TX task on R1
ttx = r1.bind_task(model.Task("TX", wcet=2, bcet=1, scheduling_parameter=1))

Now, we need a junction in order to combine the output event models of T12 and T13 into and provide the in-
put event model of TX. This is achieved by registering a pycpa.model.Junction to the system via pycpa.
model.System.bind_junction(). A junction is assigned a name and a strategy that derives from pycpa.
analysis.JunctionStrategy . Some strategies are already defined in the pycpa.junctions module.
Here, we use the pycpa.junctions.ORJoin in order to model that TX will be activated whenever T12 or T13
produce an output event.

# add OR junction to system
j1 = s.bind_junction(model.Junction(name="J1", strategy=junctions.ORJoin()))

Of course, we also need to add the corresponding task links.
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# link t12 and t13 to junction
t12.link_dependent_task(j1)
t13.link_dependent_task(j1)

# link junction to tx
j1.link_dependent_task(ttx)

On CPU2, we also need to add new tasks: T31 and RX. More specifically, we add RX as a pycpa.
model.Fork which inherits from pycpa.model.Task. A fork also requires a strategy. Here, we use
PathJitterForkStrategy that we explain later in Writing a Fork Strategy.

Before that, let us register the missing task links.

# link rx to t32 and t33
trx.link_dependent_task(t32)
trx.link_dependent_task(t33)

# link tx to t22 to rx
ttx.link_dependent_task(t22).link_dependent_task(trx)

A fork also allows adding a mapping from its dependent tasks to for instance an identifier or an object that will be
used by the fork strategy to distinguish the extracted event models. We use this in order to map the tasks T32 and T33
to T12 and T13 respectively.

# map source and destination tasks (used by fork strategy)
trx.map_task(t32, t12)
trx.map_task(t33, t13)

Writing a Fork Strategy

In this example, we want to extract separate input event models for T32 and T33 as T32 (T33) will only be activated by
messages from T12 (T13). This can be achieved by encapsulating several inner event streams into an outer (hierarchi-
cal) event streams as presented in [Rox2008]. Basically, the jitter that the outer event stream experiences can be applied
to the inner event streams. Hence, we need to write a fork strategy that extract the inner (original) event streams before
their combination by the junction and applies the path jitter that has been accumulated from the junction to the fork.
A fork strategy must implement the function output_event_model() which returns the output event model for
a given fork and one of its dependent tasks. Our fork strategy uses the previously specified mapping to get the corre-
sponding source task (i.e. T12 and T13) and creates the path object via pycpa.util.get_path(). The jitter prop-
agation is then implemented by inheriting from pycpa.propagation.JitterPropagationEventModel
but using the path jitter (worst-case latency - best-case latency) instead of the response-time jitter (wcrt-bcrt).

class PathJitterForkStrategy(object):

class PathJitterPropagationEventModel(propagation.
→˓JitterPropagationEventModel):

""" Derive an output event model from an in_event_model of the given task
→˓and

the end-to-end jitter along the given path.
"""
def __init__(self, task, task_results, path):

self.task = task
path_result = path_analysis.end_to_end_latency(path, task_results, 1)
self.resp_jitter = path_result[1] - path_result[0]
self.dmin = 0
self.nonrecursive = True

(continues on next page)
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(continued from previous page)

name = task.in_event_model.__description__ + "+J=" + \
str(self.resp_jitter) + ",dmin=" + str(self.dmin)

model.EventModel.__init__(self,name,task.in_event_model.container)

assert self.resp_jitter >= 0, 'response time jitter must be positive'

def __init__(self):
self.name = "Fork"

def output_event_model(self, fork, dst_task, task_results):
src_task = fork.get_mapping(dst_task)
p = model.Path(src_task.name + " -> " + fork.name, util.get_path(src_task,

→˓ fork))
return PathJitterForkStrategy.PathJitterPropagationEventModel(src_task,

→˓task_results, p)

Analysis

When running the analysis, we obtain the following output:

Performing analysis of system 'step3'
Result:
T21: wcrt=11

b_wcrt=blocker:9, q*WCET:1*2=2
T22: wcrt=11

b_wcrt=T21:eta*WCET:1*2=2, blocker:0, q*WCET:1*9=9
T11: wcrt=20

b_wcrt=TX:eta*WCET:5*2=10, q*WCET:1*10=10
T12: wcrt=26

b_wcrt=T11:eta*WCET:2*10=20, TX:eta*WCET:7*2=14, q*WCET:2*3=6
T13: wcrt=55

b_wcrt=T11:eta*WCET:2*10=20, T12:eta*WCET:4*3=12, TX:eta*WCET:9*2=18, q*WCET:1*5=5
TX: wcrt=6

b_wcrt=q*WCET:4*2=8
RX: wcrt=2

b_wcrt=q*WCET:1*2=2
T31: wcrt=43

b_wcrt=RX:eta*WCET:9*2=18, T32:eta*WCET:6*3=18, q*WCET:2*5=10
T32: wcrt=15

b_wcrt=RX:eta*WCET:3*2=6, q*WCET:3*3=9
T33: wcrt=76

b_wcrt=RX:eta*WCET:11*2=22, T31:eta*WCET:4*5=20, T32:eta*WCET:8*3=24,
→˓q*WCET:2*5=10

Plotting Event Models

Now, we are interested in the event models that were extracted by the fork. For this, we use the pycpa.plot module
to plot and compare the input event model of T12 and T32.

plot_in = [t12, t32, ttx]
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# plot input event models of selected tasks
for t in plot_in:

plot.plot_event_model(t.in_event_model, 7, separate_plots=False, file_format=
→˓'pdf', file_prefix='event-model-%s'

% t.name, ticks_at_steps=False)

Fig. 4: Input event model of T12.

2.2.6 Step 4: Cause-Effect Chains

In this step, we demonstrate how we can compute end-to-end latencies for cause-effect chains. In
contrast to a path, which describes an event stream across a chains of (dependent) tasks, a cause-
effect chain describes a sequence of independently (time-)triggered tasks. In both cases, data
is processed by a sequence of tasks but with different communication styles between the tasks.

Fig. 6: Cause-Effect Chains

We
mod-
ify
the
base
sce-
nario
by
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Fig. 5: Input event model of T32.

22 Chapter 2. Examples



pycpa Documentation, Release current

mov-
ing
from
single-
core
CPUs
to multiple cores per CPU. More precisely, we added one core to CPU1 as illustrated in the figure to the right:

r1.name = 'CPU1.1'
r10 = s.bind_resource(model.Resource("CPU1.0", schedulers.SPPScheduler()))

We also a new task to both cores:

t01 = r10.bind_task(model.Task("T01", wcet=5, bcet=2, scheduling_parameter=1))
t02 = r1.bind_task(model.Task("T02", wcet=5, bcet=2, scheduling_parameter=4))

t01.in_event_model = model.PJdEventModel(P=10, phi=0)
t02.in_event_model = model.PJdEventModel(P=60, phi=6)

t01 = r10.bind_task(model.Task("T01", wcet=5, bcet=2, scheduling_parameter=1))
t02 = r1.bind_task(model.Task("T02", wcet=5, bcet=2, scheduling_parameter=4))

t01.in_event_model = model.PJdEventModel(P=10, phi=0)
t02.in_event_model = model.PJdEventModel(P=60, phi=6)

Now we define an effect chain comprising T01, T02 and T11.

chains = [ model.EffectChain(name='Chain1', tasks=[t01, t02, t11]) ]

Note that every task in the effect chain has its own periodic input event model. In contrast to activation dependencies
(solid black arrows in the figure), the data dependencies within the effect chain are illustrated by blue dotted arrows.

Analysis

The effect chain analysis is performed similar to the path analysis. Note that there are two different latency semantics:
reaction time and data age. Here, we are interested in the data age.

# perform effect-chain analysis
for c in chains:

details = dict()
data_age = path_analysis.cause_effect_chain_data_age(c, task_results, details)
print("chain %s data age: %d" % (c.name, data_age))
print(" %s" % str(details))

When running the analysis, we obtain the following output:

Performing analysis of system 'step4'
Result:
T21: wcrt=11

b_wcrt=blocker:9, q*WCET:1*2=2
T22: wcrt=11

b_wcrt=T21:eta*WCET:1*2=2, blocker:0, q*WCET:1*9=9
T01: wcrt=5

b_wcrt=q*WCET:1*5=5
T02: wcrt=21

b_wcrt=T11:eta*WCET:1*10=10, T12:eta*WCET:2*3=6, q*WCET:1*5=5

(continues on next page)
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T11: wcrt=10
b_wcrt=q*WCET:1*10=10

T12: wcrt=13
b_wcrt=T11:eta*WCET:1*10=10, q*WCET:1*3=3

T31: wcrt=11
b_wcrt=T32:eta*WCET:2*3=6, q*WCET:1*5=5

T32: wcrt=3
b_wcrt=q*WCET:1*3=3

path P1 e2e latency. best case: 10, worst case: 32
path P2 e2e latency. best case: 8, worst case: 27
chain Chain1 data age: 116

{'T01-PHI+J': 0, 'T01-T02-delay': 23, 'T01-WCRT': 5, 'T02-T11-delay': 57, 'T02-WCRT
→˓': 21, 'T11-WCRT': 10}

2.2.7 Step 5: Complex Run-Time Environments

It has been shown that CPA may provide very conservative results if a lot of task dependencies are present
on a single resource [Schlatow2016]. The general idea to mitigate this is to only use event model propaga-
tion at resource boundaries as illustrated in the figure to the right. On the resource itself, we end up with task
chains that can be analysed as a whole with the busy-window approach (see [Schlatow2016], [Schlatow2017]).

Fig. 7: Task Chains

The implementation of this approach is available as an extension to the py-
CPA core at https://github.com/IDA-TUBS/pycpa_taskchain. It replaces the
pycpa.model.Resource with a TaskchainResource and also the Sched-
uler with an appropriate implementation.

Hence, we need to import the modules as follows:

from taskchain import model as tc_model
from taskchain import schedulers as tc_schedulers

We then model the scenario depicted in the figure as follows:

s = model.System(name='step5')

# add two resources (CPUs) to the system

→˓ # and register the static priority preemptive scheduler
r1 = s.bind_resource(tc_model.TaskchainResource(

→˓"Resource 1", tc_schedulers.SPPSchedulerSync()))
r2 = s.bind_resource(tc_model.TaskchainResource(

→˓"Resource 2", tc_schedulers.SPPSchedulerSync()))

# create and bind tasks to r1
t11 = r1.bind_task(model.

→˓Task("T11", wcet=10, bcet=1, scheduling_parameter=1))
t12 = r1.bind_task(model.

→˓Task("T12", wcet=2, bcet=2, scheduling_parameter=3))
t13 = r1.bind_task(model.

→˓Task("T13", wcet=4, bcet=2, scheduling_parameter=6))

t31 = r1.bind_task(model.
→˓Task("T31", wcet=5, bcet=3, scheduling_parameter=4))

t32 = r1.bind_task(model.
→˓Task("T32", wcet=5, bcet=3, scheduling_parameter=2))(continues on next page)
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t21 = r2.bind_task(model.
→˓Task("T21", wcet=3, bcet=1, scheduling_parameter=2))

t22 = r2.bind_task(model.
→˓Task("T22", wcet=9, bcet=4, scheduling_parameter=2))

# specify precedence constraints
t11.link_dependent_task(t12).

→˓link_dependent_task(t13).link_dependent_task(t21).\
link_dependent_task(t22).

→˓link_dependent_task(t31).link_dependent_task(t32)

# register a periodic with jitter event model for T11
t11.in_event_model = model.PJdEventModel(P=50, J=5)

# register task chains
c1 = r1.bind_

→˓taskchain(tc_model.Taskchain("C1", [t11, t12, t13]))
c2 =

→˓r2.bind_taskchain(tc_model.Taskchain("C2", [t21, t22]))
c3 =

→˓r1.bind_taskchain(tc_model.Taskchain("C3", [t31, t32]))

# register a path
s1 = s.bind_path(model.

→˓Path("S1", [t11, t12, t13, t21, t22, t31, t32]))

When running the analysis, we get the task-chain response time results as the
results for the last task in each chain:

Performing analysis of system 'step5'
Result:
T13: wcrt=26

b_wcrt=T11:q*WCET:1*10=10, T12:q*WCET:1*2=2,
→˓T13:q*WCET:1*4=4, T31:eta*WCET:1*5=5, T32:eta*WCET:1*5=5
T32: wcrt=22

b_wcrt=T11:WCET:10, T12:WCET:2, T31:q*WCET:1*5=5,
→˓T32:q*WCET:1*5=5
T22: wcrt=12

b_wcrt=T21:q*WCET:1*3=3, T22:q*WCET:1*9=9
Warning: no task_results for task T11
Warning: no task_results for task T12
Warning: no task_results for task T21
Warning: no task_results for task T31
path S1 e2e latency. best case: 16, worst case: 60
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CHAPTER 3

Command line switches

These are the default command line switches, available in every pyCPA application. The example pyCPA applications
and your own application potentially add some more options.

--max_iterations <int>
Maximum number of iterations in a local analysis

--max_window <int>
Maximum busy window length in a local analysis

--backlog
Compute the worst-case backlog.

--e2e_improved
enable improved end to end analysis (experimental)

--nocaching
disable event-model caching.

--show
Show plots (interactive).

--propagation <method>
Event model propagation method (jitter, jitter_dmin, jitter_offset, busy_window). default is busy_window

--verbose
be more talkative.
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CHAPTER 4

List of Modules

This is a subset of modules contained in pyCPA. The modules are loosely divided into the following categories:

4.1 pyCPA core modules

4.1.1 Model Module

Copyright (C) 2007-2017 Jonas Diemer, Philip Axer, Daniel Thiele, Johannes Schlatow
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Jonas Diemer

• Philip Axer

• Johannes Schlatow

Description

It should be imported in scripts that do the analysis. We model systems composed of resources and tasks. Tasks are
activated by events, modeled as event models. The general System Model is described in Section 3.6.1 in [Jersak2005]
or Section 3.1 in [Henia2005].

class pycpa.model.CTEventModel(c, T, dmin=1, name=’min’, **kwargs)
c events every T time event model.

set_c_in_T(c, T, dmin=1)
Sets the event-model to a periodic Task with period T and c activations per period. No minimum arrival
rate is assumed (delta_plus = infinity)! Cf. Equation 1 in [Diemer2010].
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class pycpa.model.ConstraintsManager
This class manages all system-wide constraints such as deadlines, buffersizes and more.

add_backlog_constraint(task, size)
adds a buffer size constraint backlog must be less or equal than size

add_load_constraint(resource, load)
adds a resource load constraint actual load on the specified resource must be less or equal than load

add_path_constraint(path, deadline, n=1)
adds a path latency constraint latency for n events must be less or equal than deadline

add_wcrt_constraint(task, deadline)
adds a local task deadline constraint wcrt must be less or equal than deadline

class pycpa.model.EffectChain(name, tasks=None)
An cause-effect chain describes a (functional) chain of independent tasks. All tasks within a chain are time-
triggered and hence sample their input data independently.

task_sequence(writers_only=False)
Generates and returns the sequence of reader/writer tasks in the form of [reader_0, writer_0, reader_1,
writer_1,. . . ].

A task in this sequence therefore acts either as a reader or a writer. Tasks at odd positions in this sequence
are readers while tasks at even positions are writers.

Parameters writers_only (boolean) – if true, only include writer tasks in sequence (omit
readers)

class pycpa.model.EventModel(name=’min’, container={}, **kwargs)
The event model describing the activation of tasks as described in [Jersak2005], [Richter2005], [Henia2005].
Internally, we use 𝛿−(𝑛) and 𝛿+(𝑛), which represent the minimum/maximum time window containing n events.
They can be transformed into 𝜂+(∆𝑡) and 𝜂−(∆𝑡) which represent the maximum/minimum number of events
arriving within ∆𝑡.

delta_min(n)
Delta-minus Function Return the minimum time interval between the first and the last event of any series
of n events. This is actually a wrapper to allow caching of delta functions.

static delta_min_from_eta_plus(etaplus_func)
Delta-minus Function Return the minimum time window containing n activations. The delta_minus-
function is derived from the eta_plus-function. This function is rarely needed, as EventModels are repre-
sented by delta-functions internally. Equation 3.7 from [Schliecker2011].

delta_plus(n)
Delta-plus Function Return the maximum time interval between the first and the last event of any series of
n events. This is actually a wrapper to allow caching of delta functions.

static delta_plus_from_eta_min(etamin_func)
Delta-plus Function Return the maximum time window containing n activations. The delta_plus-function
is derived from the eta_minus-function. This function is rarely needed, as EventModels are represented by
delta-functions internally. Equation 3.8 from [Schliecker2011].

eta_min(w)
Eta-minus Function Return the minimum number of events in a time window w. Derived from Equation
3.6 from [Schliecker2011], but different, as Eq. 3.6 is wrong.

eta_min_closed(w)
Eta-minus Function Return the minimum number of events in a time window w. Using CLOSED intevals
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eta_plus(w)
Eta-plus Function Return the maximum number of events in a time window w. Derived from Equation 3.5
from [Schliecker2011], but assuming half-open intervals for w as defined in [Richter2005].

eta_plus_closed(w)
Eta-plus Function Return the maximum number of events in a time window w. Derived from Equation 3.5
from [Schliecker2011], but assuming CLOSED intervals for w as defined in [Richter2005].

This is technically identical to eta_plus(w + EPSILON), but the use of epsilon has issues with float preci-
sion, as w+EPSILON == w for large w and small Epsilon (e.g. 40000000+1e-9)

load(accuracy=1000)
Returns the asymptotic load, i.e. the avg. number of events per time

class pycpa.model.Fork(name, strategy=<pycpa.model.StandardForkStrategy object>, *args,
**kwargs)

A Fork allows the modification (determined by the assigned strategy) of output event models dependent on the
destination task.

clean()
Cleans all intermediate analysis results

get_mapping(dst_task)
returns the identifier mapped to dst_task (or raises KeyError)

map_task(dst_task, identifier)
maps an identifier to dst_task

class pycpa.model.Junction(name=’unknown’, strategy=None)
A junction combines multiple event models into one output event model This is used to model multi-input tasks.
Typical semantics are “and” and “or” strategies. See Chapter 4 in [Jersak2005] for definitions and details.

clean()
mark event models as invalid

map_task(src_task, identifier)
maps an identifier to src_task

class pycpa.model.LimitedDeltaEventModel(limited_delta_min_func=None, lim-
ited_delta_plus_func=None, limit_q_min=inf,
limit_q_plus=inf, min_additive=<function recur-
sive_min_additive>, max_additive=<function re-
cursive_max_additive>, name=’min’, **kwargs)

User supplied event model on a limited delta domain.

set_limited_delta(limited_delta_min_func, limited_delta_plus_func, limit_q_min=inf,
limit_q_plus=inf, min_additive=<function recursive_min_additive>,
max_additive=<function recursive_max_additive>)

Sets the event model to an arbitrary function specified by limited_delta_min_func and lim-
ited_delta_plus_func. Contrary to directly setting deltamin_func and deltaplus_func, the given functions
are only valid in a limited domain [0, limit_q_min] and [0, limit_q_plus] respectively. For values of q
beyond this range, a conservative extension (additive extension) is used. You can also supply a list() object
to this function by using lambda x: limited_delta_min_list[x]

class pycpa.model.Mutex(name=None)
A mutually-exclusive shared Resource. Shared resources create timing interferences between tasks which may
be executed on different resources (e.g. multi-core CPU) but require access to a common resource (e.g. shared
main memory) to execute. See e.g. Chapter 5 in [Schliecker2011].

class pycpa.model.PJdEventModel(P=0, J=0, dmin=0, phi=0, name=’min’, **kwargs)
A periodic, jitter, min-distance event model.
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set_PJd(P, J=0, dmin=0, phi=0, early_arrival=False)
Sets the event model to a periodic activation with jitter and minimum distance. Equations 1 and 2 from
[Schliecker2008].

class pycpa.model.Path(name, tasks=None)
A Path describes a (event) chain of tasks. Required for path analysis (e.g. end-to-end latency). The information
stored in Path classes could be derived from the task graph (see Task.next_tasks and Task.prev_task), but having
redundancy here is more flexible (e.g. path analysis may only be interesting for some task chains).

print_all()
Print all tasks in Path. Uses __str__()

class pycpa.model.Resource(name=None, scheduler=None, **kwargs)
A Resource provides service to tasks.

bind_task(t)
Bind task t to resource Returns t

load(accuracy=10000)
returns the asymptotic load

unmap_tasks()
unmap all tasks from this resource

class pycpa.model.StandardForkStrategy
Standard fork strategy: propagates unmodified output event model to all tasks.

output_event_model(fork, dst_task=None, task_results=None)
This strategy does not distinguish between destination tasks.

Parameters

• fork (model.Task) – Fork from which to take the output event model.

• dst_task – destination task

class pycpa.model.System(name=”)
The System is the top-level entity of the system model. It contains resources, junctions, tasks and paths.

bind_junction(j)
Registers a junction object in the System. Logically, the junction neither belongs to a system nor to a
resource, for sake of convenience we associate junctions with the system.

bind_path(path)
Add a Path to the System

bind_resource(r)
Add a Resource to the System

print_subgraphs()
enumerate all subgraphs of the application graph. if a subgraph is not well-formed (e.g. a source is
missing), this algorithm may not work correctly (it will eventually produce to many subgraphs)

class pycpa.model.Task(name, *args, **kwargs)
A Task is an entity which is mapped on a resource and consumes service. Tasks are activated by events, which
are described by EventModel. Events are queued in FIFO order at the input of the task, see Section 3.6.1 in
[Jersak2005] or Section 3.1 in [Henia2005].

bind_mutex(m)
Bind a Task t to a Mutex r

bind_resource(r)
Bind a Task t to a Resource/Mutex r

32 Chapter 4. List of Modules



pycpa Documentation, Release current

clean()
Cleans all intermediate analysis results

get_mutex_interferers()
returns the set of tasks sharing the same Mutex as Task ti excluding ti itself

get_resource_interferers()
returns the set of tasks sharing the same Resource as Task ti excluding ti itself

link_dependent_task(t)
Link a dependent task t to the task The dependent task t is activated by the completion of the task.

This method returns the t argument, which enables elegant task linking. E.g. to link t0 -> t1 -> t2, call:
t0.link_dependent_task(t1).link_dependent_task(t2)

load(accuracy=100)
Returns the load generated by this task

unbind_mutex()
Remove a task fromk its mutex

unbind_resource()
Remove a task from its resource

class pycpa.model.TraceEventModel(trace_points=[], min_sample_size=20,
min_additive=<function recursive_min_additive>,
max_additive=<function recursive_max_additive>,
name=’min’, **kwargs)

set_limited_trace(trace_points, min_sample_size=20, min_additive=<function recur-
sive_min_additive>, max_additive=<function recursive_max_additive>)

Compute a pseudo-conservative event model from a given trace (e.g. from SymTA/S TraceAnalyzer or
similar). trace_points must be a list of integers encoding the arrival time of an event. The algorithm will
compute delta_min and delta_plus based on the trace by evaluating all candidates. min_sample_size is the
minimum amount of candidates that must be available to derive a representative deltamin/deltaplus

4.1.2 Junctions Module

Copyright (C) 2013-2017 Johannes Schlatow
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Johannes Schlatow

Description

Local model propagation functions (junctions)

class pycpa.junctions.ANDJoin
Compute output event models for an AND junction. This corresponds to Lemma 4.2 in [Jersak2005].

class pycpa.junctions.OREventModel(in_event_models)
Compute output event model for an OR junction. This corresponds to Section 4.2, Equations 4.11 and 4.12 in
[Jersak2005].
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eta_min(w)
Eta-minus Function Return the minimum number of events in a time window w. Derived from Equation
3.6 from [Schliecker2011], but different, as Eq. 3.6 is wrong.

eta_min_closed(w)
Eta-minus Function Return the minimum number of events in a time window w. Using CLOSED intevals

eta_plus(w)
Eta-plus Function Return the maximum number of events in a time window w. Derived from Equation 3.5
from [Schliecker2011], but assuming half-open intervals for w as defined in [Richter2005].

eta_plus_closed(w)
Eta-plus Function Return the maximum number of events in a time window w. Derived from Equation 3.5
from [Schliecker2011], but assuming CLOSED intervals for w as defined in [Richter2005].

This is technically identical to eta_plus(w + EPSILON), but the use of epsilon has issues with float preci-
sion, as w+EPSILON == w for large w and small Epsilon (e.g. 40000000+1e-9)

class pycpa.junctions.ORJoin
Compute output event models for an OR junction (see [Jersak2005]).

class pycpa.junctions.SampledInput
Uses a fixed event model (trigger) as output event model. Serves as a workaround for defining a Path over time-
triggered tasks. The sampling delay is conservatively computed and automatically added to the path latency.

4.1.3 Analysis Module

Generic Compositional Performance Analysis Algorithms

Copyright (C) 2007-2017 Jonas Diemer, Philip Axer, Daniel Thiele, Johannes Schlatow
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Jonas Diemer

• Philip Axer

• Johannes Schlatow

Description

This module contains methods for real-time scheduling analysis. It should be imported in scripts that do the analysis.

class pycpa.analysis.GlobalAnalysisState(system, task_results)
Everything that is persistent during one analysis run is stored here. At the moment this is only the list of dirty
tasks. Half the anlysis context is stored in the Task class itself!

clean()
Clear all intermediate analysis data

clean_analysis_state()
Clean the analysis state
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get_dependent_tasks(task)
Return all tasks which immediately depend on task.

class pycpa.analysis.JunctionStrategy
This class encapsulates the junction-specific analysis

propagate(junction, task_results)
Propagate event model over a junction

reload_in_event_models(junction, task_results, non_cycle_prev)
Helper function, reloads input event models of junction from tasks in non_cycle_prev

exception pycpa.analysis.NotSchedulableException(value)
Thrown if the system is not schedulable

class pycpa.analysis.Scheduler
This class encapsulates the scheduler-specific analysis

b_min(task, q)
Minimum Busy-Time for q activations of a task.

This default implementation should be conservative for all schedulers but can be overridden for improving
the results with scheduler knowledge.

Parameters

• task (model.Task) – the analyzed task

• q (integer) – the number of activations

Return type integer (max. busy-time for q activations)

b_plus(task, q, details=None, **kwargs)
Maximum Busy-Time for q activations of a task.

This default implementation assumes that all other tasks disturb the task under consideration, which is the
behavior of a “random priority preemptive” scheduler or a “least-remaining-load-last” scheduler. This is a
conservative bound for all work-conserving schedulers.

Warning: This default implementation should be overridden for any scheduler.

Parameters

• task (model.Task) – the analyzed task

• q (boolean) – the number of activations

• details – reference to a dict of details on the busy window (instead of busy time)

Return type integer (max. busy-time for q activations)

compute_bcrt(task, task_results=None)
Return the best-case response time for q activations of a task. Convenience function which calls the
minimum busy-time. The bcrt is also stored in task_results.

compute_max_backlog(task, task_results, output_delay=0)
Compute the maximum backlog of Task t. This is the maximum number of outstanding activations. Im-
plemented as shown in Eq.17 of [Diemer2012].

compute_service(task, t)
Computes the worst-case service a Task receives within an interval of t, i.e. how many activations are at
least computed within t.
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Call System.analyze() first if service depends on other resources to make sure all event models are up-to-
date! This service is higher than the maximum arrival curve (requested service) of the task if the task is
schedulable.

compute_wcrt(task, task_results=None)
Compute the worst-case response time of Task

Warning: This default implementation works only for certain schedulers and must be overridden
otherwise.

Parameters

• task (model.Task) – the analyzed task

• task_results (dict (analysis.TaskResult)) – dictionary which stores
analysis results

Return type integer (worst-case response time)

For this, we construct busy windows for q=1, 2, . . . task activations (see [Lehoczky1990]) and iterate
until a stop condition (e.g. resource idle again). The response time is then the maximum time difference
between the arrival and the completion of q events. See also Equations 2.3, 2.4, 2.5 in [Richter2005].
Should not be called directly (use System.analyze() instead).

stopping_condition(task, q, w)
Return true if a sufficient number of activations q have been evaluated for a task during the busy-time w.

This default implementation continues analysis as long as there are new activations of the task within its
current busy window.

Warning: This default implementation works only for certain schedulers (e.g. SPP) and must be
overridden otherwise.

Parameters

• task (model.Task) – the analyzed task

• q (integer) – the number of activations

• w (integer) – the current busy-time

Return type integer (max. busy-time for q activations)

class pycpa.analysis.TaskResult
This class stores all analysis results for a single task

b_wcrt_str()
Returns a string with the components of b_wcrt sorted alphabetically

clean()
Clean up

exception pycpa.analysis.TimeoutException(value)
Thrown if the analysis timed out

pycpa.analysis.analyze_system(system, task_results=None, only_dependent_tasks=False,
progress_hook=None, **kwargs)

Analyze all tasks until we find a fixed point
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system – the system to analyze task_results – if not None, all intermediate analysis results from a previous run
are reused

Returns a dictionary with results for each task.

This based on the procedure described in Section 7.2 in [Richter2005].

pycpa.analysis.analyze_task(task, task_results)
Analyze Task BUT DONT propagate event model. This is the “local analysis step”, see Section 7.1.4 in
[Richter2005].

pycpa.analysis.check_violations(constraints, task_results, wcrt=True, path=True, back-
log=True, load=True)

Check all if all constraints are satisfied. Returns True if there are constraint violations. :param task_results:
dictionary which stores analysis results :type task_results: dict (analysis.TaskResult) :param wcrt: if True,
check wcrt :param path: if True, check path latencies :param backlog: if True, check buffersized :param load: if
True, check loads :rtype: boolean

pycpa.analysis.out_event_model(task, task_results, dst_task=None)
Wrapper to call the out_event_model() method of the actual propagation strategy in order to compute the output
event model of a task. See Chapter 4 in [Richter2005] for an overview.

Parameters

• task (model.Task) – the source task

• task_results (dict (analysis.TaskResult)) – dictionary which stores anal-
ysis results

• dst_task (model.Task) – the destination task

4.1.4 Propagation Module

Event model propagation algorithms.

Copyright (C) 2007-2017 Jonas Diemer, Philip Axer, Johannes Schlatow
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Jonas Diemer

• Philip Axer

• Johannes Schlatow

Description

class pycpa.propagation.BusyWindowPropagationEventModel(task, task_results, nonre-
cursive=True)

Derive an output event model from busy window and in_event_model (used as reference). Typically provides
better results than JitterPropagationEventModel.

This results from Theorems 1, 2 and 3 from [Schliecker2008].
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class pycpa.propagation.JitterBminPropagationEventModel(task, task_results, nonre-
cursive=True)

Derive an output event model from response time jitter, the b_min as well as the in_event_model (used as
reference).

Uses a reference to task.deltamin_func

bmin(n)
minimum production time for n events at the output

class pycpa.propagation.JitterOffsetPropagationEventModel(task, task_results, non-
recursive=True)

Derive an output event model from response time jitter and in_event_model (used as reference). Also cal-
culates the offset attribute.

This corresponds to Equations 1 (non-recursive) and 2 (recursive from [Schliecker2009] This is equivalent to
Equation 5 in [Henia2005] or Equation 4.6 in [Richter2005].

Uses a reference to task.deltamin_func

class pycpa.propagation.JitterPropagationEventModel(task, task_results, nonrecur-
sive=True)

Derive an output event model from response time jitter and in_event_model (used as reference).

This corresponds to Equations 1 (non-recursive) and 2 (recursive from [Schliecker2009] This is equivalent to
Equation 5 in [Henia2005] or Equation 4.6 in [Richter2005].

Uses a reference to task.deltamin_func

class pycpa.propagation.OptimalPropagationEventModel(task, task_results, nonrecur-
sive=True)

Optimal event model based on jitter and busy_window propagation. For some schedulers, such as FIFO and
EDF neither busy_window nor jitter propagation is optimal. This will try both and chooses the best result.

class pycpa.propagation.SPNPBusyWindowPropagationEventModel(task, task_results,
nonrecursive=True)

Performs standard busy window propagation but additionally calculates the minimum distance to any preceding
event of a given task.

This corresponds to Def. 2 from [Rox2010].

4.1.5 Path Analysis Module

Compositional Performance Analysis Algorithms for Path Latencies

Copyright (C) 2007-2017 Jonas Diemer, Philip Axer, Johannes Schlatow
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Jonas Diemer

• Philip Axer

• Johannes Schlatow
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Description

This module contains methods for the ananlysis of path latencies. It should be imported in scripts that do the analysis.

pycpa.path_analysis.cause_effect_chain(chain, task_results, details=None, semantics=’data-
age’)

computes the data age of the given cause effect chain :param chain: model.EffectChain :param task_results: dict
of analysis.TaskResult

pycpa.path_analysis.cause_effect_chain_data_age(chain, task_results, details=None)
computes the data age of the given cause effect chain :param chain: model.EffectChain :param task_results: dict
of analysis.TaskResult

pycpa.path_analysis.cause_effect_chain_reaction_time(chain, task_results, de-
tails=None)

computes the data age of the given cause effect chain :param chain: model.EffectChain :param task_results: dict
of analysis.TaskResult

pycpa.path_analysis.end_to_end_latency(path, task_results, n=1, task_overhead=0,
path_overhead=0, **kwargs)

Computes the worst-/best-case e2e latency for n tokens to pass the path. The constant path.overhead is added to
the best- and worst-case latencies.

Parameters

• path (model.Path) – the path

• n (integer) – amount of events

• task_overhead (integer) – A constant task_overhead is added once per task to both
min and max latency

• path_overhead (integer) – A constant path_overhead is added once per path to both
min and max latency

Return type tuple (best-case latency, worst-case latency)

pycpa.path_analysis.end_to_end_latency_classic(path, task_results, n=1, injec-
tion_rate=’max’, **kwargs)

Computes the worst-/best-case end-to-end latency Assumes that all tasks in the system have successfully been
analyzed. Assumes that events enter the path at maximum/minumum rate. The end-to-end latency is the sum of
the individual task’s worst-case response times.

This corresponds to Definition 7.3 in [Richter2005].

Parameters

• path (model.Path) – the path

• n (integer) – amount of events

• injection_rate (string 'max' or 'min') – assumed injection rate is maxi-
mum or minimum

Return type tuple (best case latency, worst case latency)

pycpa.path_analysis.end_to_end_latency_improved(path, task_results, n=1, e_0=0,
**kwargs)

Performs the path analysis presented in [Schliecker2009recursive], which improves results compared to
end_to_end_latency() for n>1 and bursty event models. lat(n)
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4.1.6 Options Module

Copyright (C) 2007-2017 Jonas Diemer, Philip Axer
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Jonas Diemer

• Philip Axer

Description

This module contains methods to initalize the pycpa environment. It will setup an argument parser and set up default
parameters.

pycpa.options.get_opt(option)
Returns the option specified by the parameter. If called for the first time, the parsing is done.

pycpa.options.init_pycpa(implicit=False)
Initialize pyCPA. This function parses the options and prints them for reference. It is called once automatically
from get_opt() or set_opt() during the beginning of the analysis. It can also be called directly to control when
initialization happens in order to modify options afterwards.

pycpa.options.pprintTable(out, table, column_sperator=”, header_separator=’:’)
Prints out a table of data, padded for alignment @param out: Output stream (file-like object) @param table:
The table to print. A list of lists. Each row must have the same number of columns.

pycpa.options.set_opt(option, value)
Sets the option specified by the parameter to value. If called for the first time, the parsing is done.

4.1.7 Util Module

Copyright (C) 2011-2017 Philip Axer, Jonas Diemer
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Philip Axer

• Jonas Diemer

Description

Various utility functions

pycpa.util.GCD(terms)
Return gcd of a list of numbers.

pycpa.util.LCM(terms)
Return lcm of a list of numbers.
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pycpa.util.additive_extension(additive_func, q, q_max, cache=None, cache_offset=1)
Additive extension for event models. Any sub- or super- additive function additive_func valid in the domain q
in [0, q_max] is extended and the approximited value f(q) is returned. NOTE: this cannot be directly used with
delta curves, since they are “1-off”, thus if you supply a delta function to additive_func, note to add 1 and supply
q-1. e.g. util.additive_extension(lambda x: self.delta_min(x + 1), n - 1, q_max)

pycpa.util.bitrate_str_to_bits_per_second(bitrate_str)
Convert bitrate strings like “100MBit/s” or “1 Gbit/s” to an integer representation in Bit/s.

pycpa.util.breadth_first_search(task, func=None, get_reachable_tasks=<function
get_next_tasks>)

returns a set of nodes (tasks) which is reachable starting from the starting task. calls func on the first discover of
a task.

get_reachable_tasks(task) specifies a function which returns all tasks considered immediately reachable for a
given task.

pycpa.util.combinations_with_replacement(iterable, r)
combinations_with_replacement(‘ABC’, 2) –> AA AB AC BB BC CC

pycpa.util.cycles_to_time(value, freq, base_time, rounding=’ceil’)
Converts the cycle/bittimes to an absolute time in base_time

pycpa.util.dijkstra(source)
Calculates a distance-map from the source node based on the dijkstra algorithm The edge weight is 1 for all
linked tasks

pycpa.util.gcd(a, b)
Return greatest common divisor using Euclid’s Algorithm.

pycpa.util.generate_distance_map(system)
Precomputes a distance-map for all tasks in the system.

pycpa.util.get_next_tasks(task)
return the list of next tasks for task object. required for _breadth_first_search

pycpa.util.get_path(t_src, t_dst)
Find path between tasks t_src and t_dst. Returns a path as list() or None if no path was found. NOTE: There is
no protection against cycles!

pycpa.util.lcm(a, b)
Return lowest common multiple.

pycpa.util.recursive_max_additive(additive_func, q, q_max, cache=None, cache_offset=1)
Sub-additive extension for event models. Any sub-additive function additive_func valid in the domain q in [0,
q_max] is extended and the value f(q) is returned. It is optional to supply a cache dictionary for speedup.

NOTE: this cannot be directly used with delta curves, since they are “1-off”, thus if you supply a delta function
to additive_func, note to add 1 and supply q-1. e.g. ret = util.recursive_max_additive(lambda x: self.delta_min(x
+ 1), n - 1, q_max, self.delta_min_cache)

By default, the cache is filled according to the delta domain notion, so it can be used with delta-based event
models. To override this behavior, change the cache_offset parameter to zero

pycpa.util.recursive_min_additive(additive_func, q, q_max, cache=None, cache_offset=1)
Super-additive extension for event models. Any additive function additive_func valid in the domain q in [0,
q_max] is extended and the value f(q) is returned. It is optional to supply a cache dictionary for speedup.

NOTE: this cannot be directly used with delta curves, since they are “1-off”, thus if you supply a delta function
to additive_func, note to add 1 and supply q-1. e.g. ret = util.recursive_min_additive(lambda x: self.delta_plus(x
+ 1), n - 1, q_max, self.delta_plus_cache)
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By default, the cache is filled according to the delta domain notion, so it can be used with delta-based event
models. To override this behavior, change the cache_offset parameter to zero

pycpa.util.str_to_time_base(unit)
Return the time base for the string

pycpa.util.time_base_to_str(t)
Return the time base for the string

pycpa.util.time_str_to_time(time_str, base_out, rounding=’ceil’)
Convert strings like “100us” or “10 ns” to an integer representation in base_out.

pycpa.util.time_to_cycles(value, freq, base_time, rounding=’ceil’)
Converts an absolute time given in the base_time domain into cycles

pycpa.util.time_to_time(value, base_in, base_out, rounding=’ceil’)
Convert an absolute time given in base_in to another absolute time given in base_out

pycpa.util.uunifast(num_tasks, utilization)
Returns a list of random utilizations, one per task [0.1, 0.23, . . . ] WCET and event model (i.e. PJd) must be
calculated in a second step)

pycpa.util.window(seq, n=2)
Returns a sliding window (of width n) over data from the iterable s -> (s0,s1,. . . s[n-1]), (s1,s2,. . . ,sn), . . .

4.2 Schedulers (busy window functions)

4.2.1 Schedulers Module

Copyright (C) 2017 Philip Axer, Jonas Diemer, Johannes Schlatow
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Jonas Diemer

• Philip Axer

• Johannes Schlatow

Description

Local analysis functions (schedulers)

class pycpa.schedulers.CorrelatedDeltaMin(em, m, offset)
Computes the correlated event model 𝛿−𝑗 from Lemma 2 in [Rox2010].

class pycpa.schedulers.RoundRobinScheduler
Round-Robin Scheduler

task.scheduling_parameter is the respective slot size

b_plus(task, q, details=None, **kwargs)
Maximum Busy-Time for q activations of a task.
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This default implementation assumes that all other tasks disturb the task under consideration, which is the
behavior of a “random priority preemptive” scheduler or a “least-remaining-load-last” scheduler. This is a
conservative bound for all work-conserving schedulers.

Warning: This default implementation should be overridden for any scheduler.

Parameters

• task (model.Task) – the analyzed task

• q (boolean) – the number of activations

• details – reference to a dict of details on the busy window (instead of busy time)

Return type integer (max. busy-time for q activations)

class pycpa.schedulers.SPNPScheduler(priority_cmp=<function <lambda>>,
ctx_switch_overhead=0, cycle_time=1e-09)

Static-Priority-Non-Preemptive Scheduler

Priority is stored in task.scheduling_parameter, by default numerically lower numbers have a higher priority

Policy for equal priority is FCFS (i.e. max. interference).

b_plus(task, q, details=None, **kwargs)
Return the maximum time required to process q activations

spnp_busy_period(task, w)
Calculated the busy period of the current task

stopping_condition(task, q, w)
Check if we have looked far enough compute the time the resource is busy processing q activations of task
and activations of all higher priority tasks during that time Returns True if stopping-condition is satisfied,
False otherwise

class pycpa.schedulers.SPPScheduler(priority_cmp=<function <lambda>>)
Static-Priority-Preemptive Scheduler

Priority is stored in task.scheduling_parameter, by default numerically lower numbers have a higher priority

Policy for equal priority is FCFS (i.e. max. interference).

b_plus(task, q, details=None, **kwargs)
This corresponds to Theorem 1 in [Lehoczky1990] or Equation 2.3 in [Richter2005].

class pycpa.schedulers.SPPSchedulerActivationOffsets(priority_cmp=<function
<lambda>>)

Static-Priority-Preemptive Scheduler which considers activation offsets assuming all tasks are activated syn-
chronously with the given offsets/phases (phi).

Assumptions:

• implicit or constrained deadlines

We exclude/shift interferers whose phase is larger than the task under analysis iff the interferers period is equal
or smaller.

b_plus(task, q, details=None, **kwargs)
This corresponds to Theorem 1 in [Lehoczky1990] or Equation 2.3 in [Richter2005].

4.2. Schedulers (busy window functions) 43



pycpa Documentation, Release current

class pycpa.schedulers.SPPSchedulerCorrelatedRox(priority_cmp=<function
<lambda>>)

SPP scheduler with dmin correlation. Computes the approximate response time bound as presented in
[Rox2010].

b_plus(task, q, details=None, task_results=None)
This corresponds to Theorem 1 in [Lehoczky1990] or Equation 2.3 in [Richter2005].

b_plus_busy(task, q, details=None, task_results=None)
Implements Case 1 in [Rox2010].

b_plus_idle(task, q, details=None, task_results=None)
Implements Case 2 in [Rox2010].

class pycpa.schedulers.SPPSchedulerCorrelatedRoxExact(priority_cmp=<function
<lambda>>)

SPP scheduler with dmin correlation based on [Rox2010]. This is the exact version which performs an extensive
search of busy window candidates.

b_plus(task, q, details=None, task_results=None)
This corresponds to Theorem 1 in [Lehoczky1990] or Equation 2.3 in [Richter2005].

class pycpa.schedulers.SPPSchedulerRoundRobin(priority_cmp=<function <lambda>>)
SPP scheduler with non-preemptive round-robin policy for equal priorities

b_plus(task, q, details=None, **kwargs)
This corresponds to Theorem 1 in [Lehoczky1990] or Equation 2.3 in [Richter2005].

class pycpa.schedulers.TDMAScheduler
TDMA scheduler task.scheduling_parameter is the slot size of the respective task

b_plus(task, q, details=None, **kwargs)
Maximum Busy-Time for q activations of a task.

This default implementation assumes that all other tasks disturb the task under consideration, which is the
behavior of a “random priority preemptive” scheduler or a “least-remaining-load-last” scheduler. This is a
conservative bound for all work-conserving schedulers.

Warning: This default implementation should be overridden for any scheduler.

Parameters

• task (model.Task) – the analyzed task

• q (boolean) – the number of activations

• details – reference to a dict of details on the busy window (instead of busy time)

Return type integer (max. busy-time for q activations)

4.3 Plotting related Modules

4.3.1 Plot Module

Copyright (C) 2007-2017 Jonas Diemer, Philip Axer
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.
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Authors

• Jonas Diemer

• Philip Axer

Description

General purpose plotting functions: * event model plotting * gantt plotting (requires the simulation engine)

pycpa.plot.augment_range(plot_range)
Adds points around every point in plot_range for accurately plotting integer-based curves

pycpa.plot.plot_eta(eta, plot_range, label=None, color=None, show=False, filename=None)
Plot an eta function

pycpa.plot.plot_event_model(model, num_events, file_format=None, separate_plots=True,
file_prefix=”, ticks_at_steps=False)

Plot the Task’s eta and delta_min functions. Intervals in eta are shown half-open, as defined in [Richter2005].

Parameters

• model (model.EventModel) – the event model

• num_events – Number of events to plot

• file_format (string) – the format of the file to be plotted

• separate_plots (bool) – whether eta and delta plots should be combined

• file_prefix (string) – prefix of file name of plots

• ticks_at_steps (bool) – If True, draw the x-axis ticks at steps of the functions. Oth-
erwise, let matplotlib decide where to draw ticks.

Return type None

pycpa.plot.plot_gantt(tasks, task_results, file_name=None, show=True,
xlim=None, preemtion_bar_height=0.2, height=1, hdist=1,
bar_linewidth=1, min_dist_arrows=0.2, plot_event_arrival=True,
plot_activation_finishing=False, annotate_tasks=True, task=None,
wcrt_voffset=0.5, annotation_offset=0.2, arrow_width=0.05,
arrow_head_width=0.4, arrow_head_length=0.2, ar-
row_xscale=1, arrow_yoffset=0.1, xticks_only_on_changes=False,
color_preemtion_bar=’0.30’, color_execution_bar=’lightblue’, title=’Gantt’,
number_xticks=20)

Plot a gantt chart of a given task list. Execution time information is taken from the task attribute q_exec_windows
which is written by the simulation framework

4.3.2 Task Graph Module

Copyright (C) 2007-2017 Jonas Diemer, Philip Axer
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Jonas Diemer
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• Philip Axer

Description

This module contains methods to plot task/architecture graphs of your system

class pycpa.graph.dotgraph(**kwargs)
Minimalistic implementation of the pygraphviz API. With this, you can write graphs to a file.

pycpa.graph.graph_system(s, filename=None, layout=’dot’, empty_resources=False,
short_tasks=False, exec_times=False, sched_param=False,
rankdir=’LR’, show=False, dotout=None, use_pygraphviz=False,
chains=[])

Return a graph of the system

Parameters

• s (model.System) – the system

• filename – if not None, the graph is plotted to this file

• layout – graphviz layout algorithm (default l’dot’ works best with hierarchical graphs)

• empty_resources – Plot resources that have no tasks assigned

• short_tasks – Label tasks using “T_nn” instead of their potentially long name

• exec_times – Show execution times for each tasks

• sched_param – Show scheduling parameter for each task

• rankdir – Layout option for graphviz

• show (boolean) – Show plot

• dotout – If set, write a dot file to this filename

Return type None

4.3.3 Simulation Module

4.4 Server and Import/Export filters

4.4.1 XML RPC Module

Copyright (C) 2012-2017 Philip Axer, Jonas Diemer
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Philip Axer

• Jonas Diemer
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Description

XML-RPC server for pyCPA. It can be used to interface pycpa with non-python (e.g. close-source) applications.

class pycpa.cparpc.CPARPC
Basic XML RPC Server for pyCPA.

Methods prefixed with "xmlrpc_" are actually callable from the client.

Please see pycpa.model for more details about the pyCPA model and pycpa.analysis for information
about the analysis.

debug_prefix = None
Prefix for function calls in debug output

id_type = None
Specifies how unique IDs are generated

scheduling_policies = None
Dictionary of scheduler classes.

xmlrpc_analyze_system(system_id)
Analyze system and return a result id.

Parameters system_id (string) – ID of the system to analyze

Returns ID of a results object

Return type string

xmlrpc_assign_ct_event_model(task_id, c, T, min_dist)
Create an eventmodel and assign it to task. The event model will represent a periodic burst with c acti-
vations every T time units, with the activations in each burst being min_dist time units apart from each
other.

Parameters

• task_id (string) – ID of the task

• c (integer) – Number of activations per burst

• T (integer) – Period of the bursts

• min_dist (integer) – Minimum distance between events (in unit time)

Returns 0

xmlrpc_assign_pjd_event_model(task_id, period, jitter, min_dist)
Create an eventmodel and assign it to task.

Parameters

• task_id (string) – ID of the task

• period (integer) – Period (in unit time)

• jitter (integer) – Jitter (in unit time)

• min_dist (integer) – Minimum distance between events (in unit time)

Returns 0

xmlrpc_assign_scheduler(resource_id, scheduler_string)
Assign a scheduler to a resource. See xmlrpc_get_valid_schedulers() for a list of valid sched-
ulers.

Parameters
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• resource_id (integer) – ID of the resource to which to assign the scheduler.

• scheduler_string (string) – Identifies the type of scheduler to set.

Returns 0 for success

xmlrpc_clear_models()
Delete all models, i.e. all systems, resources, tasks, results etc.

Returns 0

xmlrpc_end_to_end_latency(path_id, results_id, n)
Perform a path analysis to obtain the end-to-end latency. Requires that the system has been analyzed before
to obtain the results_id.

Parameters

• path_id (string) – ID of the path

• results_id (string) – ID of the results

• n (integer) – Number of activations to obtain the latency for

Returns best- and worst-case latency for n events along path.

Return type tuple of integers

xmlrpc_get_attribute(obj_id, attribute)
Return the attribute of a task.

Parameters

• obj_id (string) – ID of the task to get the parameter from.

• attribute (string.) – Attribute to get.

Returns Value of the attribute

Return type Depends on attribute.

xmlrpc_get_task_result(results_id, task_id)
Obtain the analysis results for a task.

Parameters

• results_id – ID of the results object

• task_id (string) – ID of the task

Returns a dictionary of results for task_id.

Return type pycpa.analysis.TaskResult

xmlrpc_get_valid_schedulers()
Find out which schedulers are supported.

Returns List of valid schedulers

Return type list of strings

xmlrpc_graph_system(system_id, filename)
Generate a graph of the system (in server directory). It uses graphviz for plotting, so the ‘dot’ command
must be in the PATH of the server environment.

Parameters

• system_id (string) – ID of the system to analyze
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• filename (string) – File name (relative to server working directory) to which to store
the graph.

Returns 0

xmlrpc_graph_system_dot(system_id, filename)
Generate a graph of the system in dot file format (in server directory). The resulting file can be converted
using graphviz. E.g. to create a PDF, run:

dot -Tpdf <filename> -o out.pdf

Parameters

• system_id (string) – ID of the system to analyze

• filename (string) – File name (relative to server working directory) to which to write
to. If empty, return dot file as string only.

Returns string representation of graph in dot format

Return type string

xmlrpc_link_task(task_id, target_id)
Make task with target_id dependent of the task with task_id.

Parameters

• task_id (string) – ID of the task that activates the target task

• target_id (string) – ID of the task that is activate by the task.

Returns 0

xmlrpc_new_path(system_id, name, task_ids, attributes={})
Adds a path consisting of a list of tasks to the system.

Parameters

• system_id (string) – ID of the system

• name (string) – Name of the path

• task_ids (list of strings) – List of task ids corresponding to the tasks in the
path.

Returns ID of the created path

Return type string

xmlrpc_new_resource(system_id, name, attributes={})
Create a new resource with name and bind it to a system.

Parameters

• system_id (string) – ID of the system

• name (string) – Name of the resurce.

Returns ID of the created resource

Return type string

xmlrpc_new_system(name)
create new pycpa system and return it’s id

Parameters name (string) – Name of the system.
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Returns ID of the created system

Return type string

xmlrpc_new_task(resource_id, name, attributes={})
Create a new task and bind it to a ressource.

Parameters

• resource_id (string) – ID of the resource

• name (string) – Name of the task.

Returns ID of the created task

Return type string

xmlrpc_pickle_system(system_id)
Pickle the pycpa system on the server-side

Parameters system_id (string) – ID of the system to analyze

Returns 0 on sucess

xmlrpc_protocol()

Returns protocol version

Return type integer

xmlrpc_set_attribute(obj_id, attribute, value)
Set the attribute of the object to value.

This method can be used to set any attribute of any previously created object., However, each scheduler or
analysis expects certain attributes that must be set and ignores all others. See scheduler documentation for
details (e.g. pycpa.schedulers).

Parameters

• obj_id (string) – ID of the task to set the parameter for.

• attribute (string.) – Attribute to set.

• value (Depends on attribute.) – Value to set the attribute to

Returns 0

xmlrpc_set_id_type(id_type)
Select the type for returned IDs.

• ‘numeric’ generates numeric IDs (strings of long int)

• ‘id_numeric’ like ‘numeric’, but prefixes 'id_' (makes debug output executable)

• ‘name’ generates the ID from the objects’ name

• ‘full’ is like ‘name’, but prefixes name by parent’s name (TODO)

In case of ‘name’ or ‘full’, the ID is suffixed in case of duplicates.

Parameters id_type (string) – ‘numeric’, ‘id_numeric’, ‘name’, or ‘full’

Returns 0

xmlrpc_tasks_by_name(system_id, name)

Returns a list of tasks of system_id matching name

Return type list of strings
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4.4.2 SMFF Loader Module

Copyright (C) 2012-2017 Philip Axer
TU Braunschweig, Germany
All rights reserved.
See LICENSE file for copyright and license details.

Authors

• Philip Axer

Description

SMFF import/annotate

exception pycpa.smff_loader.InvalidSMFFXMLException(value, dom_node)

class pycpa.smff_loader.SMFFLoader
a simple SMFF xml loader reverse engineered sources, implements only a functional subset
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CHAPTER 6

What does pyCPA do?

Given, you have a (distributed) real-time system and you want to know about worst-case (end-to-end) timing behavior,
then you can use pyCPA to obtain these bounds. You provide your architecture in the form of resources such as
busses and CPUs and the corresponding scheduling policies. In a second step, you define your task-graph which is
a specification of task-communication (precedence relations) and tasks’ properties (best/worst-case execution times,
priorities, activation patterns). pyCPA will then calculate the following metrics:

• worst-case response times (WCRT) for tasks

• end-to-end timing for chains of tasks

• maximum backlog of task activations (maximum buffer sizes)

• output event models for tasks

An introduction to the approach is provided in [Henia2005]. If you want to understand the internals of pyCPA we
advice to read the paper [Diemer2012b].

6.1 Features:

• schedulers: (non-)preemtive fixed priority , Round Robin, TDMA, FIFO

• event model with periodic, jitter, minimum distance support

• system analysis: event model propagation

• end to end analysis (event- and time-triggered chains)

• gantt-charts (spnp, spp only)

• graphviz plots of your taskgraph

• SMFF support (through xml interface)
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CHAPTER 7

Why pyCPA

Why not?

• pyCPA is a reference implementation and ideal for students who want to learn about real-time performance
analysis research as well as researchers who want to extend existing algorithms.

• pyCPA is -as the name suggests- written in Python and extremely easy to use and extend. If you want, you can
easily plugin new schedulers or your own analyses.

• pyCPA is -as the name also suggests- a framework for Compositional Performance Analysis that particularly ad-
dresses complex heterogeneous systems. You can easily use distinct analyses for different processing resources,
which makes testing a new analysis in a more complex and realistic environment extremely easy.

However, pyCPA should not be used in any commercial-grade, safety-critical designs. It does not provide analysis
methods for commercial scheduling protocols like OSEK.
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CHAPTER 8

What pyCPA is not

pyCPA cannot and won’t obtain the worst-case execution time of a task. Also, there is and will be no support for any
specific protocols (e.g. OSEK, Ethernet, CAN, ARINC, AUTOSAR, etc.). Contact Luxoft if you need commercial
support for any protocols or anything else that is beyond academic use-cases.
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CHAPTER 9

Indices and tables

• genindex

• modindex

• search
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